An alternate gradient method for optimization problems with orthogonality constraints
نویسندگان
چکیده
منابع مشابه
An Augmented Lagrangian Method for ℓ1-Regularized Optimization Problems with Orthogonality Constraints
A class of `1-regularized optimization problems with orthogonality constraints has been used to model various applications arising from physics and information sciences, e.g., compressed modes for variational problems. Such optimization problems are difficult to solve due to the non-smooth objective function and nonconvex constraints. Existing methods either are not applicable to such problems,...
متن کاملImproved approximation bound for quadratic optimization problems with orthogonality constraints
In this paper we consider the problem of approximating a class of quadratic optimization problems that contain orthogonality constraints, i.e. constraints of the form X X = I, where X ∈ Rm×n is the optimization variable. This class of problems, which we denote by (Qp–Oc), is quite general and captures several well–studied problems in the literature as special cases. In a recent work, Nemirovski...
متن کاملA feasible method for optimization with orthogonality constraints
Minimization with orthogonality constraints (e.g., X>X = I) and/or spherical constraints (e.g., ‖x‖2 = 1) has wide applications in polynomial optimization, combinatorial optimization, eigenvalue problems, sparse PCA, p-harmonic flows, 1-bit compressive sensing, matrix rank minimization, etc. These problems are difficult because the constraints are not only non-convex but numerically expensive t...
متن کاملAn Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems
In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...
متن کاملAn affine scaling method for optimization problems with polyhedral constraints
Recently an affine scaling, interior point algorithm ASL was developed for box constrained optimization problems with a single linear constraint (GonzalezLima et al., SIAM J. Optim. 21:361–390, 2011). This note extends the algorithm to handle more general polyhedral constraints. With a line search, the resulting algorithm ASP maintains the global and R-linear convergence properties of ASL. In a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Algebra, Control & Optimization
سال: 2021
ISSN: 2155-3297
DOI: 10.3934/naco.2021003